

## POWDER Commercial Feed Schedule

Batch Tank Mixing by Volume

per Gallon or 4L of water





The Following weights (wt) and EC target values are approx. and based off OPPM water

1g of POWDER ≈.3EC

Foundation Powder

**Production Powder** 

3g of POWDER  $\Rightarrow$  1.0EC

3g of Foundation + 3g of (Development or Production) ≈ 1.8 - 2.0 EC

Production is a denser product and will weigh more compared to Development by wt/volume ratio. ex. 1tsp of Production = 4g; 1tsp of Development = 3g

pH values tend to be acidic after mixing. We recommend using a potassium silicate OR potassium hydroxide (ph UP) based product prior to base nutrients in order to help buffer out the acidity.

Trace amounts of sediments could be visible after mixing, but this is unlikely and does not affect product or material viability. Usually this is residual dust or dirt from the environment.



SCAN

For more product info

<u>Step 1</u>: Start with a clean OPPM water source or consider existing tap EC values prior to adding nutrients. Always start with 25-50% full of your total reservoir volume to dissolve nutrients properly.

<u>Step 2:</u> Measure out each product accurately in EQUAL portions and/or ratios according to reservoir size to create a complete base nutrient - (we made it easy)

ex. 3g of Foundation: 3g of Development in 1 GAL of RO water is approx. 2.0EC complete base nutrient electroconductivity density (0.9-1.0EC per product @ 3g/gal dilution).

<u>Step 3:</u> Use agitation to mix all dry concentrates thoroughly into water one product at a time; start with Foundation and DO NOT combine dry products together without water\*

Step 4: Fill remaining volume of reservoir to 100% capacity if needed to fully suspend and dissolve all nutrient elements.

Step 5: Test the temperature, pH & EC values of the final nutrient mix before applying to crops.





## **NOTES**

Stock Tank Concentrates are used at varying injection ratios to achieve target EC values

Production is a denser product and will weigh more compared to Development by wt/volume ratio. EC will vary slightly depending on the decanting method.

ex. Itsp of Production = 4g; Itsp of Development = 3g

pH values tend to be acidic after mixing. We recommend using a potassium silicate OR potassium hydroxide (ph UP) based product prior to base nutrients in order to help buffer out the acidity.

Trace amounts of sediments could be visible after mixing, but this is unlikely and does not affect product or material viability. Usually this is residual dust or dirt from the environment.

<u>Step 1:</u> Ensure all dosing components are working properly and clean stock tanks thorougly prior to making new concentrates.

Step 2: Mix stock tank concentrates for each product accordingly @ 2lb : 1gal (powder : water)

ex. 25lb: 12.5gal of water = Stock Tank Concentrate mixture; 1lb: 2gal of water would require double the injector ratio to achieve the same EC value.

Hint: Warm water will dissolve powders at a faster rate. We recommend covering each stock tank product to prevent evaporation and contamination.

<u>Step 3:</u> Adjust doser/injector ratio accordingly to modify EC value of the delivered solution. Ensure each Stock Tank Concentrate is attached to the correct doser and properly injecting the mix.

Hint: Higher ratios will product lower EC values.

- Step 4: Collect a small sample of irrigation solution from various plant sites to ensure injector ratio and EC accuracy.
- Step 5: Check Stock Tank Concentrate mixes regularly for quality control and incresed doser maintenance.





The Following volumes (ml) and EC target values are approx. and based off OPPM water

5ml of Liquid ≈ approx. (0.2 - 0.5EC) 15ml of Foundation + 15ml of (Development or Production) ≈ approx. 2.0EC+/Foundation is a denser product and will weigh(wt) more compared to Production or Devleopment by wt/volume ratio.

ex. 5mL of Foundation = 0.5EC; 5mL of Production or Development = 0.3EC.

pH values tend to be acidic after mixing. We recommend using a potassium silicate OR potassium hydroxide (ph UP) based product prior to base nutrients in order to help buffer out the acidity.

Trace amounts of sediments could be visible after mixing, but this is unlikely and does not affect product or material viability. Usually this is residual dust or dirt from the environment.

<u>Step 1</u>: Start with a clean 0PPM water source or consider existing tap EC values prior to adding nutrients. Always start with 25-50% full of your total reservoir volume to dissolve nutrients properly.

<u>Step 2</u>: Measure out each product accurately in EQUAL portions and/or ratios according to reservoir size to create a complete base nutrient - (we made it easy)

ex. 15ml of Foundation: 15ml of Development in 1 GAL of RO water is approx. 2.0EC complete base nutrient electroconductivity density (0.9-1.0EC per product @ 10ml/gal dilution).

<u>Step 3:</u> Use agitation to mix all liquid concentrates thoroughly into water one product at a time; start with Foundation and DO NOT combine liquid products together without water\*

Step 4: Fill remaining volume of reservoir to 100% capacity if needed to fully suspend and dissolve all nutrient elements.

<u>Step 5:</u> Test the temperature, pH & EC values of the final nutrient mix before applying to crops.





## **NOTES**

Stock Tank Concentrates are used at varying injection ratios to achieve target EC values

\*Foundation is a denser product and will weigh more compared to Devleopment or Production by wt/volume ratio. EC will vary slightly depending on the decanting method.

ex. 1L of Foundation = 2.52lb; 1L of Development or Production = 2.44lb

pH values tend to be acidic after mixing. We recommend using a potassium silicate OR potassium hydroxide (ph UP) based product prior to base nutrients in order to help buffer out the acidity.

Trace amounts of sediments could be visible after mixing, but this is unlikely and does not affect product or material viability. Usually this is residual dust or dirt from the environment.

<u>Step 1:</u> Ensure all dosing components are working properly and clean stock tanks, if necessary, routinely to prevent contamination. Use the factory containers for each product if possible and avoid decanting.

<u>Step 2:</u> Remove seals from each product container and insert injector nozzles/straws into each product. Ensure each injector is assigned/marked to a specific product to prevent confusion of products.

<u>Step 3</u>: Adjust doser/injector ratio accordingly to modify EC value of the delivered solution. Ensure each Stock Tank Concentrate is attached to the correct doser and properly injecting the mix.

Hint: Higher ratios will product lower EC values.

<u>Step 4</u>: Collect a small sample of irrigation solution from various plant sites to ensure injector ratio and EC accuracy at the dripper.

Step 5: Check Stock Tank Concentrate mixes regularly for quality control and incresed doser maintenance.